

COURSE OUTLINE: ELR309 - NUMERIC & NETWK ANAL

Prepared: Juhani Paloniemi

Approved: Corey Meunier, Chair, Technology and Skilled Trades

Course Code: Title ELR309: NUMERICAL AND NETWORK ANALYSIS **Program Number: Name** 4029: ELECTRICAL TY-PROCES **ELECT./INSTRUMENTATION PS** Department: Semesters/Terms: 19W Course Description: An in-depth study of A.C. and D.C. circuits using network theorems, differential equations andLaplace transforms. Total Credits: 7 Hours/Week: 5 75 **Total Hours:** Prerequisites: ELR109. MTH577 Corequisites: There are no co-requisites for this course. **Vocational Learning** Outcomes (VLO's) **4029 - ELECTRICAL TY-PROCES** addressed in this course: VLO 2 Analyze and solve complex technical problems related to electrical systems by Please refer to program web page applying mathematics and science principles. for a complete listing of program outcomes where applicable. **Essential Employability** EES 3 Execute mathematical operations accurately. Skills (EES) addressed in EES 4 Apply a systematic approach to solve problems. this course: Course Evaluation: Passing Grade: 50%, D Other Course Evaluation & Grade Assessment Requirements: **Definition Grade Point Equivalent** A+90 - 100% 4.00 A 80 - 89% B 70 - 79% 3.00 C 60 - 69% 2.00 D 50 - 59% 1.00 F (Fail)49% and below 0.00 CR (Credit) Credit for diploma requirements has been awarded. S Satisfactory achievement in field /clinical placement or non-graded subject area. U Unsatisfactory achievement in field/clinical placement or non-graded subject area. X A temporary grade limited to situations with extenuating circumstances giving a student additional time to complete the requirements for a course. NR Grade not reported to Registrar's office. W Student has withdrawn from the course without academic penalty. **Books and Required** Network Analysis for ELR309 by Doug Faggetter

🕰 SAULT COLLEGE | 443 NORTHERN AVENUE | SAULT STE. MARIE, ON P6B 4J3, CANADA | 705-759-2554

ELR309: NUMERICAL AND NETWORK ANALYSIS

alyze a resistive circuit ng Nodal analysis and ish analysis. urse Outcome 2 alyze First-Order circuit urse Outcome 3 alyze Second-Order cuits using differential uations.	voltage and current in the elements of a resistive circuit. Learning Objectives for Course Outcome 2 S. Write and solve a differential equation for a network with resistors a capacitor. Write and solve a differential equation for a network with resistors and an inductor. Learning Objectives for Course Outcome 3 Write and solve a differential equation for a Second-Order circuit with resistors, inductors and capacitors. Solve the differential equation for a Second-Order circuit with excitation by initial conditions, excitation by a source and
ng Nodal analysis and sh analysis. urse Outcome 2 alyze First-Order circuit urse Outcome 3 alyze Second-Order cuits using differential	Learning Objectives for Course Outcome 2 s. Write and solve a differential equation for a network with resistors a capacitor. Write and solve a differential equation for a network with resistors and an inductor. Learning Objectives for Course Outcome 3 Write and solve a differential equation for a Second-Order circuit with resistors, inductors and capacitors. Solve the differential equation for a Second-Order circuit with excitation by initial conditions, excitation by a source and
alyze First-Order circuit urse Outcome 3 alyze Second-Order cuits using differential	s. Write and solve a differential equation for a network with resistors a capacitor. Write and solve a differential equation for a network with resistors and an inductor. Learning Objectives for Course Outcome 3 Write and solve a differential equation for a Second-Order circuit with resistors, inductors and capacitors. Solve the differential equation for a Second-Order circuit with excitation by initial conditions, excitation by a source and
urse Outcome 3 alyze Second-Order cuits using differential	resistors a capacitor. Write and solve a differential equation for a network with resistors and an inductor. Learning Objectives for Course Outcome 3 Write and solve a differential equation for a Second-Order circuit with resistors, inductors and capacitors. Solve the differential equation for a Second-Order circuit with excitation by initial conditions, excitation by a source and
alyze Second-Order cuits using differential	Write and solve a differential equation for a Second-Order circuit with resistors, inductors and capacitors. Solve the differential equation for a Second-Order circuit with excitation by initial conditions, excitation by a source and
cuits using differential	circuit with resistors, inductors and capacitors. Solve the differential equation for a Second-Order circuit with excitation by initial conditions, excitation by a source and
	excitation by initial conditions and a source. Write complementary, particular and complete solutions. Solve for the under-damped case, critically-damped case and over-damped case.
urse Outcome 4	Learning Objectives for Course Outcome 4
alyze First-Order and cond-Order circuits usir place transforms.	Define the Laplace transform. Analyze a circuit with a transformed network if excited by a source. Analyze a circuit by transforming the differential equation if the circuit is excited by initial conditions and a source.
Evaluation Type	Evaluation Weight Course Outcome Assessed
-	1
	Evaluation Type sts (4 evenly weighted) gust 20, 2018

ELR309: NUMERICAL AND NETWORK ANALYSIS